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Abstract—Self-Supervised Learning (SSL) has enhanced the
learning process of semantic representations from images. SSL
has reduced the need for annotating or labelling the data by
relying less on class labels during the training phase. SSL
techniques dependent on Constrative Learning (CL) are acquir-
ing prevalence because of their low dependency on training
data labels. Different CL methods are producing state-of-the-
art results on datasets which are used as the benchmarks for
Supervised Learning. In this survey, we provide a review of
CL-based methods including SimCLR, MoCo, BYOL, SwAYV,
SimTriplet and SimSiam. We compare these pipelines in terms
of their accuracy on ImageNet and VOCO07 benchmark. BYOL
propose basic yet powerful architecture to accomplish 74.30%
accuracy score on image classification task. Using clustering
approach SwAV outperforms other architectures by achieving
75.30% top-1 ImageNet classification accuracy. In addition, we
shed light on the importance of CL approaches which can
maximise the use of huge amounts of data available today. At
last, we report the impediments of current CL. methodologies and
emphasize the need of computationally efficient CL pipelines.

Index Terms—Self-Supervised Learning, Contrastive Learning,
Image Augmentation, Data Annotation

I. INTRODUCTION

In the previous decade, researchers have put effort in
upbringing the performance of Al based systems by training
the models on massive amount of labeled data [1]. This
approach leads the models highly depend on carefully anno-
tated data. The supervised learning depicts good results with
large training datasets, and improved computation resources.
Therefore, this technique faces issues in real time scenario
where annotation is not possible or dealing with few shot
learning problems [2].

Recently the research community shifted to integrated
method of generative and contrastive techniques known as
Self-Supervised Learning (SSL) [3]. Generally, SSL based
approaches mitigate the challenges of traditional approaches
by learning feature representation from data itself without
expensive annotation. The generative pretext tasks in SSL learn
features from input samples with pseudo-labels as represen-
tations at intermediate level that helps in downstream tasks
[4]. Colorizing pictures, super-resolution, image in-painting,
jigsaw puzzles, and audio-visual correlation have shown to be
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Fig. 1. Pipeline of contrastive learning

appropriate in learning excellent representations [5]. Contrary,
CL is based on the discriminative scheme, which forms
the representation that helps to distinguish one object from
another. The objective of CL is to learn the representation in
a manner where semantically relative features attract and non-
relative features repel each other [0]. The SSL based tech-
niques take benefit from the knowledge learnt during pretext
phase to perform effectively on any specific downstream task
[7]. The downstream tasks include any task or subtask for
example classification, detection, and segmentation. However,
Semi Supervised Learning requires labeled data for training
in the small quantity. On other hand SSL learn the underlying
structure itself [8]. The comprehensive review [3] exhibits
the comparison of SSL performance with semi supervised
learning where SSL surpassed semi-supervised learning with
clear margin.

In unsupervised learning, neural networks perform better
by pretraining without labels and make the representation
space meaningful [9]. The random augmentation and different
version of same images can be acquired through cropping,
flipping, varying the brightness or color. All the images that
belong to same original images are treated as “positive” and
pulled together. The “negatives” are different images from
dataset and pushed apart. Ultimately, the network learns from
the random transformations of the same image, get robust, and
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generalized [10], [11]. The embedding space based on these
transformations produce adaptable representation that leads to
significant improvement [12], [13].

The pipeline of the CL and knowledge transfer procedure

from pretext to downstream task are visually represented in
the Fig. 1. The problem that researchers faced in contrastive
approach for unsupervised pretraining is that it pushed apart
the samples that should belong to same class (in different
orientation and not transformed), made it harder for the
classifier to categorize later in the right class or create decision
boundaries [14]. Supervised contrastive learning addressed
this issue by introducing labels in pretraining objective [15].
The purpose is to classify samples correctly that belong to
same class even if the orientation, scenery or features are
different. Contrastive pretraining objective functions are better
at exploiting the information in the dataset than the cross-
entropy loss.
Recent research includes MoCo [16] that considers CL as
dynamic dictionary lookup problem. On the ImageNet [17]
dataset, SImMCLR [18] and SimSiam [19] achieved results that
are comparable to the state-of-the-art supervised approach.
Likewise, BYOL [20] , and SWAV [21] are some studies that
demonstrate the efficacy of the pretext tasks utilized and how
they improve model performance.

Several attempts to survey Contrastive SSL are proposed.
In [3], the survey provides the knowledge to chose the right
pretext task and suitable architecture for different downstream
tasks. The architecture pipelines introduced are classified into
four parts; namely, memory bank, end-to-end, momentum
encoder and clustering. In [22], three methods, which are
generation-based, context-based, and free semantic label-based
methods, are introduced for image feature SSL. For computer
vision, natural language processing, and graph learning ap-
plication, SSL is analyzed in [2] according to its objective,
whether generative, contrastive, or generative-contrastive. The
use of geometric transformers as a supervisory signal in SSL is
surveyed in [23]. Methods and applications of SSL within the
sequential transfer learning framework is reviewed in [24]. The
contributions of this paper are to introduce the state-of-the-
art architectures of Contrastive SSL, to analyze and compare
their performances using ImageNet and VOCOQ7 dataset, and to
highlight the importance, potential, and limitations in existing
literature for SSL CL.

II. IMPORTANCE OF SELF-SUPERVISED LEARNING

The availability of labeled data today has made it possible
to train many task specific machine learning models. Unfortu-
nately these models cannot be generalized to other tasks and
can perform better only on the tasks for which they are trained
specifically'. In humans and animals, common sense plays a
significant role to learn and generalize from few examples.
We don’t need massive amounts of data to identify objects
every time. The ability of AI models to generalize to tasks in

Uhttps://ai.facebook.com/blog/self-supervised-learning- the- dark- matter-of-
intelligence/

such a way that humans or animals do is still an open and
challenging research area of Al In realm of easily available
huge amounts of data, one of the most promising ways to build
such models which can generalize to many tasks is SSL which
can approximate the general intelligence in machine learning
models. SSL leverage the power of data without relying on
the labels and learns those subtle representations and patterns
which are difficult for supervised models to learn.

In addition to learning good representations, SSL also
mitigates the problems and cost involved in the process of
annotating data. Data annotation is a costly process. For
instance, the annotation time for assigning semantic class
labels can be in the order of hours for a single image where
the annotator do pixel-wise labelling and draws boundary lines
to segment different instances in images. The accuracy of
image classification model can be worsened by the human
errors involved in the image labelling in a supervised learning
setting. These errors include, fine grained recognition [25],
ground truth class unawareness or insufficient training data at
the time of annotation.

SSL comes handy in dealing with all the aforementioned
problems in data labelling by mitigating the reliance on the
class labels of the data. SSL learns the representations in
unsupervised fashion [26] as a pretext task which can then
be fine-tuned to a downstream task.

IITI. EXISTING MODELS
A. MoCo

Momentum Contrast (MoCo) [16] views CL [27] from
dictionary perspective to match a query with its positive
key encoding and make it as dissimilar as possible to the
negative key encodings. In the end to end approach, neural
network encode query and keys, take the gradients through
each query encoding network and key encoding network that
is highly memory-inefficient. MoCo proposed that the only
need to pass the gradients through the query encoder, the
key encoder get updated by adding a momentum update of a
query encoder’s parameters as represented in the (1) and Fig.
2b.

Ok <—m9k+(1—m)9q @))

In MoCo, the loss can be defined as the dictionary lookup
problem, as a query is matched to a key in the dictionary
[27]. Image can be encoded into query features, where the
dictionary is built up by the features of a large set of image
samples [28]. Dictionary in computer vision was not readily
available, it is computed on the run time dynamically by
applying an encoder to set of image samples. The dictionary
lookup problem happens in the feature space [29].

MoCo mainly addressed two challenges; i) how to make a
large dynamic dictionary , ii) how to make dynamic dictionary
consistent when the encoder is being updated (in the context of
SGD training). To have a large dictionary in Contrastive SSL
framework, features of the previous batch were maintained as a
queue. The dictionary consists of current and previous batches
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Fig. 2. A comprehensive schematics that summarizes the different architectures of SSL CL. The main blocks are the encoders, stop gradient, projector and

momentum encoder.

and is not limited by the batch size. The features in the dictio-
nary from the updated encoder covers multiple batches, which
arise the issue of inconsistency, to improve the consistency
of the features, they proposed to use the momentum encoder
that updates slowly. The momentum encoder is the moving
average of the original encoder. Authors found in the ablation
experiments that momentum is of central importance.

B. SimCLR

SimCLR [18] came up with the idea of visual representation
through CL without demanding specific architecture or huge
memory. Their proposed framework consists of following
components:

o Random augmentation module, which indiscriminately
transforms input data samples into correlated view known
as positive pairs.

o A deep network encoder which extracts vector represen-
tation from data included augmented versions.

o They added multi-layer perceptron projection head from
the representation to the classification layer with con-
trastive loss function.

The representations in SimCLR in the Fig. 2e is learnt
by increasing the agreement between different augmented
versions of the same data example via a contrastive loss in
the latent space [30]. In the contrastive framework, the cosine
similarity is the basic metric for all functions that can be used
to compute contrastive loss [11] is given in (2).

A.B
IA B
CL depends on the relative embeddings and the function

known as Noise Contrastive Estimation (NCE) as mentioned
in the (3).

sim(A, B) = (2)

exp(sim(q, k1 )/7)
geﬂcp(sim(q, ky)/7) + exp(sim(q, k_)/T)
SimCLR introduced some interesting advancements to the
contrastive SSL framework which include larger batch size,

L=-lo

3)

larger models, stronger data augmentation, adding multi-layer
perceptron projection head. SimCLR(4x) model surpasses a
supervised learning baseline on the resnet50 model. The author
presented an updated version as SimCLR-v2 [31] that exploit
deep projection along with memory mechanism from MoCo

[16].

C. BYOL

Bootstrap Your Own Latent (BYOL) consists of two neural
networks namely an online network and a target network [20].
On high level this CL approach tries to get rid of necessary
negative samples involved when doing the contrastive loss for
SSL. Two augmented views of the same image are fed to the
online and target networks respectively. A representation of the
first view is learnt using an encoder in the online network and
the updated learnt weights are copied to the target network
as an exponential moving average. The objective function
is simply the minimization of Mean Squared Error (MSE)
[32] between the predictions from online network and target
projections shown in (4).

Lo,& 2 || (g0(z0) — 22| )

The objective function is optimized stochastically to minimize
the loss with respect to € only.

The projection heads are used in online network to reduce
the dimensionality of the output of the encoder and generates
the low dimensional features for predictor. The predictor is
a part of online network which predicts the representation of
the target network. The architecture of BYOL is shown in Fig.
2a. Due to the lack of symmetry between the online and target
networks and the moving average, BYOL learns to ignore the
augmentations of the image.

D. SwAV

Swapping Assignments between Views (SwAV) [21] is an
SSL method that exploits the contrastive methods without the

Proceedings of 2022 2nd International Conference on Artificial Intelligence (ICAI)

Authorized licensed use limited to: Mohamed bin Zayed UnlversnggPﬁgBaal’Iwwg?gﬁ,%rﬂogqewr&pm]lo,zom af™0:09:17 UTCfrom IEEE Xplore. Restrictions apply.



need for pairwise comparisons and is therefore not compu-
tationally expensive. SWAV clusters’ the input images and
constrains consistency between assignments of clusters which
are constructed for different augmentations (views) of the
same input image. In SWAV we learn to predict the cluster
assignment of one view from the representation of another
view.

In SWAV, two augumented views of the same image are fed
to the two feature encoders shown in Fig. 2c. These features
are then mapped to its nearest neighbours in a set of clusters
which is a finite length discrete codebook. The algorithm
predicts the codes of one view from the representation of
another view. Swap prediction loss given in (5) is calculated
from the codes and features.

Lz, 25) = 121, qs) + U(zs, 2t) )

The swap prediction loss shows the fit between the features z
and a code q.

E. SimSiam

Simple Siamese (SimSiam) [19] employs Siamese networks
in contrastive learning. As noted in Fig. 2d, SimSiam archi-
tecture inputs two augmentation of the same image and max-
imizes the similarities between them. Two identical encoders
are used to process the augmented images. The identical
encoders share the same weights and backbone, which is
ResNet and the Multi-Layer Perceptron (MLP). After one of
the encoders, a predictor is added. The predictor function is
to transforms the output of the encoder and matches it to
the output of the other encoder. Cosine and cross-entropy
similarity are used to maximize the similarity between the
augmented images. Stop- gradient operation mechanism is in-
troduced in the architecture to prevent the collapsing solution,
which is the classification trivial solution. Despite its relatively
simple architecture, when SimSiam is tested on a 1000-classes
ImageNet set, it reaches competitive results when compared
to other state-of-the-art complex architectures.

FE. SimTriplet

Simple Triplet builds on top of the SimSiam architecture,
as can be noted in the architecture description and in Fig.
2f. SimTriplet architecture found in [33] utilizes the adjacent
patches similarity from pathological images Whole Side Image
(WSI). By training on a pair of nearby image patches of the
same tissue type, SimTriplet performs two different augmen-
tations on the first image patch and another augmentation of
the second image patch. After which SimTriplet eliminates
the need for negative images samples by minimizing the
intra-sample and inter-sample similarities. Intra-sample is the
similarity between the two augmentations of the same image,
whereas inter-sample is the similarity between the two adjacent
image patches. SimTriplet architecture first step consists of
three parallel and identical encoders for the three augmented
images. The encoders incorporate ResNet-50 and three-layer
multi-layer perceptron (MLP). After one of the encoders, the
addition of an MLP predictor attempts to match that encoder

output to the output of the two remaining encoders. The two
remaining encoders have a stop-gradient mechanism. The total
loss, or Triplet loss function, is computed as the summation of
losses between inter- and intra-samples, using negative cosine
similarity function. As SimTriplet is trained, mixed precision
is used as in deep neural network it performs half-precision
operations to lessen the training time and required memory.
The implication of mixed precision is that SimTriplet can
be trained using only a single GPU with 16GB memory.
When tested on 1%, 10%, 25%, and 100% annotated training
data, SimTriplet outperforms SimSiam network and supervised
model based on F1 score and balanced accuracy. For instance,
for 10% annotated training data labels, SimTriplet balanced
accuracy score is 0.7110 compared to 0.3561 and 0.6864 for
supervised model and SimSiam network, respectively [33].

IV. RESULTS

Currently several SSL methods compete with the supervised
learning models on different benchmark datasets. Most of
these models are evaluated on the ImageNet [17] and Pascal
VOC [34] datasets for the downstream tasks such as image
classification and object detection, respectively. In this section
we compare the performance of these models on different
downstream tasks. All the literature that we referred used
ResNet as their encoders with not much different set of
evaluation metrics. We use these common metrics to compare
the results of these models with each other. The widely
accepted evaluation metrics are transfer learning with VOCO07,
linear evaluation [22] and semi-supervised learning on the
ImageNet.

A summary of reviewed models is given in Table I. The
accuracy of these models in supervised settings is given as a
baseline. BYOL, SwAYV, and SimSiam are comparable because
their architectures are somewhat similar, and therefore, achieve
top results (74.3%, 75.3%, and 71.3% respectively) in linear
evaluation on ImageNet. The noticeable part is that these
results are remarkably close to that of the baseline supervised
network. Among the SSL models, the closest model in terms of
accuracy to the supervised learning is SWAV which achieves a
top performance of 75.3% for the ImageNet linear evaluation.
It also shows the best performance for the object detection task
with VOCO7 dataset, scoring accuracy of 88.9%. The model

TABLE I
RESULTS OF IMAGENET SEMI-SUPERVISED LEARNING USING 10%
LABELS, LINEAR EVALUATION AND TRANSFER LEARNING (TL) ON
PASCAL VOC OBJECT DETECTION TASKS.

Top-1 Top- Lin.

Method Acc. Acc. Eval. voco7
Supervised 56.40 80.40 76.50 87.50
MoCO [16] - - 60.60 -

SimCLR 65.60 87.80 69.30 85.50

[18]

BYOL [20] 68.80 89.00 74.30 85.40
SwAV [21] 70.20 89.90 75.30 88.90
SimSiam - - 71.30 -

[19]
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is outperforming even the supervised baseline by 1.4%. In
addition, the semi-supervised learning with ImageNet, both
in top-1 accuracy and top-5 accuracy, SWAV is achieving
the highest score of 70.20% and 89.90% respectively. The
architecture of SWAV is fairly simple, yet its performance is
outstanding on account of online clustering.

V. DISCUSSION

Each of the architectures that is analyzed in our study
attempts to mitigate some of the shortcomings found in
the other architecture. The shortcomings are noted in Table
IT as the usage of negative samples, higher computational
power, large batches, stop gradient and momentum encoders.
MoCo and SimCLR integrate negative samples to avoid the
collapsing, or trivial solution. SiImCLR outperforms MoCo in
linear evaluation by 8.7% despite removing the computation-
ally intensive momentum encoder and stop gradient. BYOL,
which employs momentum encoder for accuracy and stop
gradient mechanism, removes the need for negative samples.
In linear evaluation top-1 accuracy, BYOL performs better
than MoCo and SimCLR. Nonetheless, despite its superior
performance, it is still lags behind supervised learning and
uses high computing power of 512 cloud TPU cores.

Both SWAV and SimSiam architectures removes the need
for negative samples, large batches, and momentum encoders.
In SwAV, online clustering build a computationally inexpen-
sive architecture by creating a list of feature and then using
simple algorithms to match these features, such as kth nearest
neighbor. As SimSiam architecture doesn’t include online
clustering, stop gradient mechanism is introduced. In all of
the downstream tasks introduced in Table I, SWAV has the
highest scores compared to the other architectures. SimTriplet
was not tested neither on ImageNet nor on VOCO07 datasets, as
it relies on the fact that the two adjacent patches of the image
are similar. SimTriplet is tested on WSI dataset, and for that
application it outperformed SimSiam as noted in [33].

Finally, it is worth noting that many of these architec-
tures have further enhanced modifications and versions with
stronger linear evaluation top-1 accuracy, and object detec-
tion rates. However, the modified versions are much more
computationally exhaustive. For instance, SimCLR version 2
outperforms supervised learning method by using 400 mil-
lion parameters, compared to the 25 million parameters for
standard SimCLR introduced in [18]. Despite Self-Supervised
CL techniques being comparatively new in literature, they are
showing potential to perform better than supervised learning
with labeling of only 1% or 10% of the total data. This
justifies intensive research which could perhaps optimize the
architectures, expand on the strength of each, and introduce
hybrid models.

A. Limitations and Future Work

The CL shows promising results on the benchmark datasets,
however, there is a need for more theoretical analysis to justify
these results. According to [4] the SSL methods MoCo [27]
and PIRL [35] does not capture the viewpoint and category

TABLE 11
COMPARISON OF DIFFERENT CL SSL METHODS BASED ON
ARCHITECTURE COMPONENTS AND RESOURCES IN PRETEXT TASK.

-ve Large Stop Mom.
Method samp. Compute Batches Grad Enc.
MoCo v 8 GPU X v v
[16]
SimCLR v - v X X
[18]
BYOL X 512 X v v
[20] TPUs
SwAV X 64 X X X
[21] GPUs
SimSiam X - X v X
[19]
SimTriplet X 1 GPU X v X
[33]

instance invariance which is of important consideration in
recognition tasks. The architecture design and sampling meth-
ods greatly affect the performance of contrastive objective
function [36]. The authors in [37] show that SSL is greatly
dependent on the pretext task chosen for its training. They
further elaborate that SSL is better at extracting the task-
specific features from the data and completely ignores the
task-irrelevant features and therefore more theoretical analysis
is required to understand the design pipeline of the contrastive
methodology. In SSL the representations are learnt using the
self-supervised objectives which are greatly influenced by the
underlying data [3]. With the increasing sizes of the datasets,
the associated biases are hard to mitigate. In order to train the
SSL models which are based on contrastive loss, the learning is
greatly affected when easy negatives examples are encountered
during the training. Due to less difference in the positive and
the negative examples, the ability of the model of converging
quickly is limited. The authors of [18] tackle the issue by
increasing the batch sizes while [16] uses huge memory banks.
Both of these methods are difficult to replicate without having
massive computing power.

VI. CONCLUSION

This study examines several current high-performing SSL
approaches for acquiring visual representation based on con-
trastive learning. We discussed the augmentation strategies
for each model, the architectural design, the phenomenon
to build pretext tasks that finally lead to learn representa-
tions for downstream tasks. Additionally, we reviewed the
CL-based methods namely SimCLR, MoCo, BYOL, SwAV,
SimTriplet and SimSiam. The pretraining of the network on
unlabeled data using CL has produced promising results for
different vision tasks including classification, detection, and
segmentation. The analysis was reported for all architecures
and compared the accuracies on ImageNet benchmark. SWAV
outperformed all other CL approaches that we reviewed.
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