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Multimodality Representation Learning, as a technique of learning to embed information from different

modalities and their correlations, has achieved remarkable success on a variety of applications, such as

Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language

Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from

different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, rec-

ognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks.

The different variants of transformer-based architectures performed extraordinarily on multiple modalities.

This survey presents the comprehensive literature on the evolution and enhancement of deep learning mul-

timodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern

multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the

pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal ap-

proaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that

can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers

that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and po-

tential research topics are explored. A constantly-updated paperlist related to our survey is maintained at

https://github.com/marslanm/multimodality-representation-learning.
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1 INTRODUCTION

Multimodal systems utilize two or more input modalities, such as audio, text, images, or video to
produce an output modality, which could be different from the inputs. Cross-modal systems, a sub-
part of multimodal systems, utilize information from one modality to enhance the performance
in the other modality. For example, a multimodal system would use image and textual modali-
ties to assess a situation and perform a task, whereas a cross-modal system would use an image
modality to output a textual modality [1, 2]. Audio-Visual Speech Recognition (AVSR) [3], de-
tecting propaganda in memes [4], and Visual Question Answering (VQA) [5] are examples of
the multimodal systems. Multimodal representation learning techniques reduce the heterogeneity
gap between different modalities by processing raw heterogeneous data hierarchically [6]. Het-
erogeneous features from different modalities offer additional semantics in the form of contextual
information [6]. Thus, complementary information can be learned through multiple modalities.
For example, the visual modality can help speech recognition by providing lip motion [7] in the
AVSR. Recent advanced variants of deep learning approaches have addressed classical multimodal
challenges (correlation, translation, alignment, fusion) by mapping different modalities into a stan-
dard representation space.

In the past, many task-specific deep learning strategies have significantly enhanced the perfor-
mance for a variety of multimodal tasks [8]. More recently, pre-training and fine-tuning methods
for Natural Language Processing (NLP) and Computer Vision (CV) have garnered significant
attention, primarily due to their semantically rich representation and the availability of large-scale
public models [9]. This study summarized the pipeline of the task-specific methods for multimodal
representation. We discuss pretraining types and pretext tasks required to make the pretrained
model robust on the variety of multimodal or cross-modal downstream tasks. We demonstrate
that a majority of pretraining methods leverage transformers, leading to the inception of unifying
architectures. These models, capable of handling all modalities across diverse downstream tasks,
mitigate the need for individual task-specific fine-tuning, thereby reducing both computational
complexity and processing time [10]. Additionally, evaluation on downstream tasks, multimodal
benchmarks, extensive range of multimodal applications, including NLP tasks that are enriched by
the incorporation of visual and audio modalities, e.g., sentiment analysis, document understanding,
fake news detection, retrieval, translation, and other reasoning applications are comprehensively
presented in this survey. Figure 1 exhibits the categorical percentage of deep learning multimodal
papers included in this survey. The bar graph shows the development and the availability of deep
learning multimodal approaches on Google Scholar yearly.

2 BACKGROUND - THE ADVANCE EVOLUTION OF MULTIMODAL

ARCHITECTURES

The concept of multimodal research was initially inspired by the field of audio-visual speech
recognition (AVSR) [11], where well-aligned integration of vision and hearing was a fundamen-
tal requirement. Encouraging outcomes from AVSR studies prompted the research community to
broaden the application of this approach to other multimodal tasks, e.g., content indexing and
retrieval [12], video summarization [13], and shot-boundary detection [14]. In the early 2000s,
the AMI Meeting [15] and SEMAINE [16] corpora were generated with the intention of under-
standing human multimodal behaviors and the dynamics of interpersonal interactions. These
foundational datasets not only led to the inception of the Audio-Visual Emotion Challenge

(AVEC) [17], but also later propelled its expansion into the realm of automatic detection of depres-
sion and anxiety [18]. Over time, multimodal methodologies have advanced, enabling simultane-
ous processing of diverse modalities such as speech, vision, and text [2, 19]. The latest category
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Fig. 1. The pie chart on the left represents the percentage of papers for each section included in this survey.

The pie chart in the center represents the percentage of papers for each multimodal application. The right-

most figure expresses the growth of deep learning-based multimodal papers in the last six years on Google

Scholar.

encompasses data derived from multimedia sources that extend beyond the complexity of two or
three modalities. These complex multimodal approaches motivate researchers to tackle associated
challenges through more effective strategies such as pretraining and fine-tuning. These methods
have been found to deliver superior performance compared to traditional task-specific frameworks.
Advanced approaches are particularly adept at tackling complex multimodal tasks, exhibiting su-
perior performance to previous models.

The primary obstacle for multimodal methods lies in understanding the relationships between
various encoding schemes of multiple modalities, a problem commonly identified as the hetero-
geneity gap in learning representation [20]. The fusion module in multimodal learning systems
aids in reducing the heterogeneity gap by correlating the similar semantics across different modal-
ities, a strategy that has been proven to boost performance in a majority of tasks [21]. Recent
research has demonstrated that deep learning methods effectively understand and process repre-
sentations due to their robust learning capabilities [22]. One of the key advantages of deep learning
is its ability to hierarchically learn representations as general-purpose learning without needing
additional structural information. These factors contribute to making deep learning an extremely
compatible approach for multimodal representation learning.

The early task-specific multimodal methods were trained to address only one multimodal task.
Figure 2(a) broadly depicts the pipeline of task-specific multimodal methods. For example, in VQA,
a visual encoder, usually based on some variant of a Convolutional Neural Network (CNN)

[23, 24], is used to extract visual features. Meanwhile, textual features are encoded by text encod-
ing blocks that typically build on Bag-of-Words [25], seq2seq models [26], possibly with attention
mechanism [27]. Subsequently, the encoded representations are channeled to Multimodal Fusion
(explored extensively for multimodal learning), which fuses and builds interactions between fea-
tures of different modalities to produce a unified representation [28]. These Multimodal Fusion
methods have evolved as (i) simple fusion, which fuses features through concatenation or element-
wise sum or product [29], (ii) inter-modality attention, which aligns features of different modalities
and constructs more informative joint representations [30], (iii) intra-modality attention, which
develops relational reasoning by forming a graphical representation within modalities [31], and
(iv) transformers, which leverage the aforementioned techniques by concurrently focusing on other
modalities and associated regions within the same modality [32]. Since transformers learn and es-
tablish intricate interactions between different modalities [33, 34], they are viewed as the structural
foundational block of universal multimodal pretraining methods.

With the availability of large-scale datasets and computing resources, the pretraining para-
digm has yielded efficient performance in various domains, including text [35], vision [36], and
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Fig. 2. (a) Task-specific multimodal methods are trained on benchmarks created for specialized downstream

tasks. After preprocessing, each encoder (Ei ) receives one modality (Mi ) data to produce an embedding. The

fusion module is responsible for the interaction of features from different modalities and is trained to predict

the downstream task. (b) In pretraining, the raw data from the web or dataset, in the form of any modality

(Mi ), is preprocessed and passed to a specialized encoder (Mi ) at the encoding stage. Encoders produce

embeddings which are integrated by the fusion module to produce a meaningful unified representation by

predicting pretext tasks. The blue-bounded box in the pretraining stage represents the foundation model,

which is readily available at the fine-tuning stage as a pretra ined model. A multimodal dataset for the

downstream task can leverage this generic pretrained model for downstream prediction.

speech [37]. This has spurred interest in multimodal pretraining, allowing for the processing of
raw data (both labeled and unlabeled) using semi-supervised, self-supervised, or unsupervised
approaches. As depicted in Figure 2(b), each modality is processed by a dedicated encoder to gen-
erate embeddings. These embeddings are then passed to a fusion module specifically trained for
multimodal pretext tasks. The generation of contextually rich embeddings through dedicated en-
coders allows the fusion module to learn more robust associations between different modalities.
This, in turn, can lead to more accurate performance in downstream tasks, as the model becomes
adept at handling complex multimodal data. In the fine-tuning phase of multimodal learning, the
pre-trained model, serving as a flexible backbone, is further trained using a specific multimodal
dataset for a target task. Through fine-tuning, the model adjusts its learned representations to
better accommodate the relationships and interactions between different modalities present in the
task-specific dataset. Consequently, the rich, general-purpose knowledge from pretraining is trans-
formed into task-specific insights, improving the model’s performance on the downstream task.
Figure 2 clearly illustrates two pivotal approaches in multimodal learning: task-specific methods
and the pretraining-fine-tuning paradigm. They are primarily distinguished by the type of input
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data: task-specific methods leverage specialized benchmarks, while pretraining can employ any
kind of data. Task-specific methods are trained directly for the downstream task, whereas pre-
training is for a pretext task and yields a generic pretrained model that can be adapted to a variety
of downstream tasks, thus saving computational time and complexity associated with individually
training each model.

2.1 Comparison with Previous Surveys

Numerous surveys have extensively investigated multimodality, with a specific focus on multi-
modal learning techniques, pretraining technologies, model-specific topologies, and task-specific
applications. Representation, correlation, fusion, translation and co-learning are essential compo-
nents of multimodal learning that are surveyed in [2, 6, 7, 38, 39]. In [2], the taxonomy of multi-
modal learning components is established. Additionally, [7] contributes by offering a perspective
on these components from the domain of computer vision. The work of [6] and [39] solely exam-
ined representation and fusion, respectively, presenting their mathematical frameworks, architec-
tures, challenges, and prospects. Despite the importance of multimodal learning components in
understanding and processing different modalities, these surveys are focused and fail to present a
holistic depiction of multimodality.

Vision-language pretraining objectives, strategies, architectures and datasets are extensively
studied in [28, 40–42]. The multimodal pretraining survey [41] focused on image-text tasks as it
reviews methodologies of encoding of raw image and text, and architectures for the interactions.
While downstream tasks are addressed in all pretraining surveys, the level of detail regarding state-
of-the-art frameworks is limited, and there is insufficient coverage of diverse applications within
the multimodal domain. The studies [1, 43], and [44] inspected multimodal deep learning models,
which are presented with respect to modalities involved in [1] and to prominent tasks in [44].
The work of [43] presented methodologies for finding optimal multimodal architectures and cross-
modality regularization. Various works assessed multimodal learning from a specific application
perspective, such as visual question answering [45], biomedical applications [46], event detection
[47], sentiment analysis [48, 49], and object detection [50].

Our work expands on existing research, providing a more comprehensive exploration of task-
specific methods and multimodal pretraining developments. We elaborate on the significance of
pretraining tasks for large-scale pretrained multimodal models and their robustness across diverse
downstream tasks. Additionally, we catalogue pretraining benchmark datasets, covering their sizes,
included modalities, and targeted tasks. This survey also investigates the advancements of unify-
ing architectures and presents a comparative analysis of various SOTA models. We extend our
exploration to a wide range of applications, including vision, language, audio, healthcare, and
NLP-specific tasks. Table 1 provides a comparative view of our work with other surveys, high-
lighting the inclusion of pretraining concepts, downstream applications, NLP applications, evolu-
tionary perspectives, unifying architectures, datasets, and active repository availability. This broad
approach facilitates a holistic view of multimodal learning, guiding future research by shedding
light on efficient multimodal handling techniques.

3 MULTIMODAL DEEP LEARNING APPROACHES

This section explores multimodal architectures, divided into task-specific and Pretraining-
Finetuning architectures (Figure 2). Section 3.1 reviews task-specific methods, recently evolving
into large-scale pretrained approaches. Section 3.2 outlines the pretraining process, including pre-
text tasks and state-of-the-art (SOTA) frameworks for multimodal tasks. Section 3.3 compares
results from SOTA approaches, while Section 3.4 lists the acronyms used.
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Table 1. Survey Comparison Comparing between Different Survey Work Based on Their Content

Ref. Year Pretraining Applications NLP focused Evolution Unifying Arch. Datasets Active repo

[43] 2017 ✗ ✓ ✗ ✗ ✗ ✓ ✗

[2] 2018 ✗ ✓ ✓ ✓ ✓ ✗ ✗

[6] 2019 ✗ ✗ ✗ ✓ ✓ ✗ ✗

[1] 2021 ✗ ✓ ✓ ✓ ✗ ✓ ✗

[44] 2021 ✓ ✓ ✓ ✗ ✗ ✓ ✗

[41] 2022 ✓ ✓ ✗ ✗ ✓ ✓ ✗

[7] 2022 ✗ ✓ ✓ ✗ ✓ ✓ ✗

[42] 2022 ✓ ✓ ✓ ✗ ✗ ✓ ✗

[28] 2022 ✓ ✓ ✗ ✗ ✓ ✓ ✗

[40] 2023 ✓ ✓ ✗ ✗ ✗ ✓ ✗

Our Work 2023 ✓ ✓ ✓ ✓ ✓ ✓ ✓

The content studied is the presence or absence of pretraining concepts, multimodal applications, NLP focused (textual

and audio forms), evolutionary perspective, unifying architectures, benchmark datasets, and active repository.

3.1 Multimodal Task-Specific Methods

Multimodal representation learning improves the robustness of deep learning (DL) models as
complementary features are present. This section describes task-specific multimodal methods
that can be generally classified into encoder-decoder-based, attention-based, and reinforcement
learning-based models.

3.1.1 Encoder-Decoder Based Models. Encoder-decoder models, such as cascaded CNN-RNN
and RNN-RNN, transform input data to output via semantically rich latent representations. Wu
and Hu [51] proposed a Cascaded Recurrent Neural Network (CRNN) to learn image-text
interactions. This uses a VGG16 network as the encoder and a Stacked Gated Recurrent Unit

(SGRU) as the decoder. Ji et al. [52] suggested a Globally Enhanced Transformation (GET)

network, employing Faster-RCNN and ResNet-101 as the encoder. The GET network outperformed
the CRNN on the MS-COCO dataset [53] with a higher BLEU score.

Autoencoders [54], a form of encoder-decoder model using unsupervised learning, construct
latent representations to reconstruct original data points [54]. In [55], a multimodal architecture
is built on autoencoders for processing audio and video modalities, feeding into a conventional
encoder-decoder architecture.

3.1.2 Graph Based Models. In multimodal learning, the fusion module, which facilitates the in-
terplay of features across various modalities, has emerged as a critical and central component [56].
Task-specific methods extensively employ graph-based approaches for fusion tasks [28]. Graph

Neural Networks (GNNs) demonstrate exceptional robustness when handling multimodal data,
skillfully compensating for incomplete or noisy inputs in one mode by leveraging information from
other modes [57]. In multimodal tasks, GNNs are capable of encapsulating both local and global
context through iterative neighborhood aggregation [58]. Graph-based multimodal fusion encoder
[59] for Neural Machine Translation (NMT) performed superior on Multi30K datasets. The
method constructs graphs containing two types of nodes: all words in the sentence are included
as textual nodes and the nouns in the sentence, identified by the Stanford Parser, are detected
by the visual grounding toolkit as visual nodes. Additionally, two types of edges are employed:
intra-modal edges to connect nodes in the same modality, and inter-modal edges to connect cor-
responding nodes in different modalities, capturing the semantic relationship of multi-modal data.
These graphs are processed through multiple graph-based multimodal fusion layers, which iter-
atively facilitate semantic interactions and learn node representations, ultimately producing an
attention-based context vector for the decoder. Likewise, Gao et al. [60] addressed the scene textual
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ambiguity in a better way than pre-trained word-embeddings by designing Multimodal Graph

Neural Network (MM-GNN). VQA-GNN [61] integrates image-level information and concep-
tual knowledge into a unified multimodal semantic graph for joint reasoning. The effectiveness of
this model is demonstrated by top-ranking performances in the VCR task, outperforming previ-
ous models, and notably, it also provides a pioneering cross-domain interpretability for visual and
textual knowledge in the visual question answering task.

3.1.3 Attention Based Models. The attention mechanism improves model learning by inspect-
ing information flow, features, and resources. These models help the network to deal with long-
time dependencies by allocating attention to vital information and filtering all unnecessary or
irrelevant stimuli. A recent work by Jiang et al. [62] employed the attention notion through At-

tention Weight Gate (AWG) module and Self-Gated (SG) module to the Multi Gate Attention

Network (MGAN) pipeline. Moreover, MGAN extracted and utilized intra-object relation in the
network [62]. Another attention based variant is explored in attention-guided Multimodal Cor-

relation (AMC) [63]. The attention mechanism is applied to the modality rather than a semantic
context in a vector, varying the importance of each modality depending on the required query
from the system. The application of AMC has applied search logs, where the user inputs an image
and text to be searched, and the system determines which modality is more valuable.

3.1.4 Reinforcement Learning-Based Models. Reinforcement learning models learn through
trial-and-error interactions between an environment-aware agent and its environment, balancing
between exploiting prior knowledge and exploring new actions. The algorithm “reinforces” ac-
tions yielding high rewards. Unlike supervised learning, it doesn’t need labeled data. This concept
is integrated into deep learning in [64], using a Hierarchical-based Reinforcement Learning

(HCL) framework with roles like a manager, worker, and critic. The manager sets goals for the
worker, who performs actions to achieve them, while the critic evaluates goal completion. The
HCL outperforms baseline models in transforming video modality into text.

As the complexity of multimodal frameworks increases, further deep learning architectures are
modified and enhanced, such as Generative Adversarial Networks (GAN) and Probabilistic

Graphical Models (PGM) [65, 66]. However, the approaches mentioned in this section pose chal-
lenges in terms of time and computational resource efficiency due to the need for retraining for
each specific task. Recognizing these challenges, many researchers have now shifted their focus
to pretraining frameworks. These aim to address and overcome the limitations inherent in task-
specific methods, reducing the need for repetitive retraining for different tasks, and thereby pre-
senting a more efficient avenue for future multimodal representation learning.

3.2 Multimodal Pretraining Methods

This section covers a well-detailed discussion of the pretraining framework, with a special em-
phasis on multimodal pretraining, including pretraining types, pretext tasks, and state-of-the-art
methods. Earlier,Self-Supervised Learning (SSL) boosted pretraining for language tasks [27]
which was later used for vision tasks and produced efficient results [67]. This concept was then
extended to multimodal scenarios. Pretraining on massive labeled or unlabeled datasets and fine-
tuning on task-specific datasets has become a modern paradigm for various domains [68].

3.2.1 Types of Pretraining. Kalyan et al. [46] proposed different types of pretraining approaches
used by researchers to design and train the model on a large scale. These approaches include:
(1) Pretraining From Scratch (PTS) in which massive unlabeled text is used to train the model
from scratch using random initialization for all the layers of the language model, e.g., ELECTRA
[69], RoBERTa [70] and BERT [35]. (2) Continual Pretraining (CPT), models are initialized
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using existing pretrained models. This approach reduces the required computational resources.
The domain-specific task uses this method to alleviate the challenges of short target vocabulary.
BioBERT [71], HateBERT [72] and infoXLM [73] are the examples of CPT. (3) Simultaneous

Pretraining (SPT) used in [74]. It consumes domain-specific and general text simultaneously
while training from scratch. (4) Task Adaptive Pretraining (TAPT) used in [75] demands a
small amount of data. (5) Knowledge Inherited Pretraining (KIPT) [76] uses the Knowledge
distillation technique.

3.2.2 Pretraining Tasks. In the pretraining phase, predefined or pretext tasks are solved to learn
language representation. These tasks are based on self-supervised learning and are challenging
enough to make the model robust by exploiting the training signal, which include: (1) Casual Lan-

guage Modeling (CLM) is unidirectional and uses context to predict the next word employed by
GPT-1 [77] for the first time. (2) Masked Language Model (MLM) enhanced the representation
by considering the context in both directions and consuming only 15% of the tokens applied by [35]
for the first time. (3) Replaced Token Detection (RTD) mitigates the pretraining challenges of
MLM (less supervisory signal) by classifying the replaced token as original or not [69]. (4) Shuffled

Token Detection (STD) reduces the discrepancy between pretraining and finetuning by exploit-
ing discriminative tasks (detection of shuffled tokens) [78].Other pretraining tasks include RTS

(Random Token Substitution), NSP (Next Sentence Prediction), SLM (Swapped Language

Models), and SOP (Sentence Order Prediction), which established as baseline pretext tasks for
the multimodal pretraining.

3.2.2.1 Multimodal Pretraining Tasks. Multimodal pretraining tasks offer the benefits of enhanced
representation learning, cross-modal transfer, improved generalization, effective multimodal fu-
sion, and improved performance in a wide range of multimodal applications. These tasks include:
(1) Cross-Modal Masked Language Model (CMML), which is similar to MLM in BERT; more-
over, pretraining models also consider contextual visual features and unmasked tokens. It is an ef-
fective approach to vision language pretraining by assisting the model for better align and regard
the relationship between different modalities [41]. (2) Cross-Modal Masked Region Prediction

(MRP) [79]: Similar to the previous objective, MRP masks RoI with zeros. The contextual visual fea-
tures and text inference predicts the masks. (3) Image-Text Matching (ITM) or Visual Linguis-

tic Matching (VLM) [80]: This objective considers the coarse-grained relationship between image
and text features by matching and aligning. It measures the relevancy between different modal-
ities at high level. (4) Cross-Modal Contrastive Loss (CMCL): This objective learns universal
vision and language features by pushing the relevant image-text pairs close and non-relevant apart.
The highest similarity score between embeddings of different modalities help make the decision.
The similar alternative multimodal pretraining tasks are Masked Object Classification (MOC)

[79], Phrase-Region Alignment (PRA) [81], Word Region Alignment (WRA) [82], Video-

Subtitle Matching (VSM) [83], Mask Frame Modeling (MFM) [83], Frame Order Modeling

(FOM) [83], Visual Translation Language Model (VTLM) [84], and so on.
Pretrained approaches have been used extensively to perform exceptionally well for NLP down-

stream tasks. The researchers proposed pretrained models including BERT [35], ALBERT [85],
RoBERTa [70], and T5 [86], to learn general textual representation and to boost downstream tasks’
performance. Similarly, pretrained approaches have been adopted to reduce the time and compu-
tation for vision-based downstream tasks [87, 88]. Simultaneously, the pretraining paradigm is
making strides in the domain of multimodal data, enhancing performance across a diverse range
of tasks, from cross-modal to fully multimodal. The upcoming section unveils recent architectures
crafted to exploit this rich multimodal data.
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3.2.3 Transformer-Based Architectures. Recent work on large scale pretraining has inspired the
research community to progress in multimodal tasks [89]. The combined pretraining-based ad-
vanced approaches on image-text pairs at a large scale are developing rapidly which outperform
task-specific architectures. For instance, in ViLBERT [9], the authors pretrained BERT on textual
and visual inputs in different streams that maintain relationships through co-attention layers. Af-
ter pretraining on the Conceptual Captions dataset [90], the model is transferred to mainstream
language-vision tasks, including VQA, VCR, and caption-based image retrieval and achieved con-
sistent improvement over task-specific architectures. The Vision-Language Pretraining (VLP)

in a unified manner is proposed by [91] that outperformed the previous SOTA for image caption-
ing and VQA tasks. The proposed model follows the shared encoder-decoder architecture and is
pretrained on a large scale image-text pairs in an unsupervised manner. They evaluated the model
on VQA 2.0, COCO Captions, and Flickr30k [92] Captions. In line with prior work, Li et al. [93]
proposed a pretraining approach in which the object tags are used as anchors to enhance the
alignment learning with paired text.

In addition to aforementioned approaches, structured knowledge is extracted from scene graphs
in the recent research [95], which assist in learning joint representations as semantically connected
features of text and vision. Scene graph prediction tasks which includes Object Prediction (OP),
Attribute Prediction (AP), and Relationship Prediction (RP) are newly proposed by the au-
thors in the pretraining phase. The proposed model can learn semantically aligned joint represen-
tation. The model’s efficacy is evaluated across five cross-modal tasks, wherein it leads the VCR
task, exhibiting a performance enhancement of 3.7%. Desai and Johnson [94] proposed VirTex,
a data-efficient alternative to supervised pretraining that uses captions as a supervisory signal
for vision tasks. They conducted joint pretraining of the model which comprises of convolution
and transformer backbones from scratch for vision and language modalities which aims to gener-
ate captions for images. The visual backbone comprised of ResNet-50 is used to compute visual
features of input images, which are then passed to the textual head to generate captions for cor-
responding images. After training, the textual head is discarded, as the primary aim is to utilize
the learned features for subsequent visual tasks. Moreover, Shi et al. [3] proposed Audio-Visual

Hidden Unit BERT (AV-HuBERT), trained from scratch on LRS3 benchmark which consists of
speech and visual features. The hybrid architecture ResNet-transformer serves as the backbone
of the proposed model. AV-HuBERT extracts the phonetic and linguistic features from audio and
visual streams simultaneously to produce latent representation. This representation can be used
for pretraining baselines, e.g., HuBERT [99] which can outperform models that are pretrained on
a single modality. Table 2 draws the comparative picture of discussed approaches, on the basis of
benchmarks, tasks and architectural settings, respectively.

Word2Vec [100], GPT [77], ELMO [101], BERT, and other SSL-based frameworks perform good
natural language understanding but do not consider grounding information from the visual world
as motivated by Bender and Koller [102] and Bisk et al. [103]. The pretraining process designed by
Tan and Bansal [96], known as Vokenization, considers both language tokens and their correspond-
ing visual information, termed as “vokens”, as input for supervision. The authors utilized the small
image captioning dataset to train a vokenizer that can further generate language vokens of large
corpora. The results achieved by visually supervised models outperformed SSL-based pretraining
approaches on GLUE, SWAG, and SQuAD benchmarks. However, models trained using supervised
methods often rely heavily on labeled data, which can limit their generality and usability. There-
fore, to overcome these challenges, self-supervised multimodal learning methods have emerged,
such as CLIP [89]. CLIP (Contrastive Language-Image Pre-training) is pretrained on WIT

(WebImageText) [89], which contains image-text pairs collected from the web. Unlike standard
vision models, CLIP jointly trains an image encoder and a text encoder during the training phase.
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Table 2. Transformer-based Pretraining Approaches, Benchmarks, Tasks and Architectural Settings

Model Benchmarks Pretraining Tasks Architectural Comparison

VLP [91] VQA2.0, COCO Captions,
Flickr30k

IC, VQA 12-layer, 768-hidden, 12-heads,
110M param.

VirTex [94] COCO Captions Image Classification,
IC

Visual backbone: ResNet-50;
textual head: two unidirectional
Transformers

ViLBERT [9] VQA, VCR, RefCOCO, IR VQA, VCR, GRE, CIR Textual Encoder: BERT-base;
Visual backbone: Faster R-CNN
(ResNet 101)

ERNIE-ViL
[95]

VCR, RefCOCO+, VQA,
IR-Flickr30K,
QR-Flickr30K

SGP, VCR, VQA, GRE,
IR, TR

Textual Encoder: BERT-base;
Visual backbone: Faster R-CNN
(ResNet 101)

OSCAR [93] COCO, CC, SBU captions,
flicker30k, GQA

VQA, ITR, IC, NOC,
GQA, NLVR2

Base: 12-layer, 768-hidd, 12-heads,
110M param.; Large: 24-layer,
1024-hidd, 16-heads, 340M param.

Vokenizer
[96]

SST-2. QNLI, QQP,
MNLI,SQuAD v1.1,
SQuAD v2.0, SWAG Avg.

GLUE, SQuAD, SWAG,
GLUE

Textual Encoder: BERT; Vision
Encoder: ResNeXt-101-32x8d

AV-HuBERT
[3]

LRS3, VoxCeleb2 ASR Hybrid ResNet-Transformer
architecture

CLIP [89] COCO, Visual Genome,
YFCC100M

Image Classification,
IC, OCR, AR,
Geo-Localization

Textual Encoder: GPT-2, GPT-3;
Vision Encoder: ViT-B/32,
ViT-B/16, ViT-L/14

BLIP [97] No-Caps, COCO,
Flickr30k

ITR, IC, VQA, VD,
NLVR

Textual Encoder: BERT base;
Image Encoder: ViT-B/16, ViT-L/16

BLIP-2 [98] No-Caps, COCO,
Flickr30k, VQAv2,
OK-VQA, GQA

Instructed Zero-shot
Image-to-Text
Generation, VQA, IC,
ITR

Textual Encoder: Q-former; Vision
Encoder: FlanT5, ViT-L/14,
ViT-g/14

The performance of CLIP is benchmarked across over 30 vision and vision-language datasets, in-
cluding COCO [53], Visual Genome [104], and YFCC100M [105], and the like. BLIP (Bootstrap-

ping Language-Image Pre-training) [97], a unified vision-language framework, uses knowledge
distillation on captions for improved performance. It achieves state-of-the-art results on various
tasks, including image-text retrieval, image captioning, VQA, and even in zero-shot performance
on text-to-video retrieval and VideoQA. BLIP is extensively evaluated on No-Caps [106], COCO
[53], and Flickr30k [92]. BLIP-2 [98], an improved visual-language model based on comprehensive
pretraining strategy, achieves state-of-the-art performance across numerous vision-language tasks.
BLIP-2 exhibits a wide range of zero-shot image-to-text abilities, which include visual knowledge
reasoning, visual common sense reasoning, visual conversation, and personalized image-to-text
generation. Like its predecessor, BLIP-2 uses the same evaluation datasets and continues to imple-
ment the Captioning and Filtering (CapFilt) method.

3.2.4 Unifying Architectures. Unifying architecture is designed to accept different modalities
as input and train the model on multiple tasks to lessen the task-specific parameters as generic
architecture. Li et al. [107] presented the unified model for text-only and vision-only tasks. The
authors put effort into creating a single suitable transformer-based pretrained model that can be
finetuned on any modality for any downstream task. The foundation model is a transformer pre-
trained jointly on unpaired images and text. The pretraining is based on knowledge distillation
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from the teacher pretrained model for better joint training and gradient masking for balancing the
parameters’ updates. The shared transformer that can encode all modalities for the different tasks
by employing a task-specific classifier is used. The aspiration is to reduce the task and modality-
specific parameters by bringing up a more generic model, and maximum computation occurs in
the shared transformer module.

The UNITER [82] is a pretraining approach conducted at a large scale over four benchmark
datasets. Joint embedding from both modalities is learned to perform heterogeneous downstream
tasks. MLM, MRM (Masked Region Modeling), ITM (Image-Text Matching), and WRA

(Word-Region Alignment) are employed as a pretraining task. Additionally, the pretraining task
achieves global image text alignment using Conditional masking. Optimal Transport is the authors’
second concept for the WRA task to improve the alignment between images and words. Hu and
Singh [108] proposed a unified transformer for multitasking based on multimodal learning at a
time. The proposed architecture uses a specialized encoder for each modality and a shared de-
coder for every task. DETR [87] is used for visual features encoding and BERT [35] performs the
textual feature encoding. Contrastive learning is employed on multimodal data by Akbari et al.
[109] to train a transformer encoder that processes audio, text, and video simultaneously.

Wang et al. [110] proposed the One For All (OFA) method, which unifies tasks and modalities
via a sequence-to-sequence framework based on Unified vocabulary (for all kinds of the modal-
ity). OFA represents data of different modalities in a unified space that discretizes images and text
to form a unified output vocabulary. They presented three qualities that a unifying model should
support to maintain multitasking for any modality: (1) Task-Agnostic: handcraft instruction-based
learning is utilized to achieve this property. (2) Modal-Agnostic: single Transformer-based architec-
ture uses globally shared multimodal vocabulary to make it modal agnostic. (3) Task comprehen-
siveness: pretraining conducted on various unimodal and multimodal tasks to achieve task com-
prehensiveness. The transformer is the backbone of the encoder-decoder unified network for the
pretraining, finetuning, and zero-shot tasks. It considers multimodality and multitasking to make
it more generalized for unseen tasks. OFA achieved SOTA on multimodal and outperforms other
well-known pretrained for unimodal. As in GPT [77] and BART [111], BPE (Byte-Pair Encoding)

is used to divide a sequence of words into sub-word sequences and embed them into features.
InstructBLIP [112] a general-purpose vision-language model, has achieved state-of-the-art, zero-

shot performance on numerous vision-language tasks. InstructBLIP is a vision-language instruc-
tion tuning framework consisting of an image encoder, a Large Language Model (LLM), and a
Q-Former [98]. In its evaluation, InstructBLIP employs two LLMs: FlanT5 [113] and Vicuna [114].
The evaluation metric incorporates 11 tasks across 28 datasets, including image captioning, video
reasoning, visual conversational QA, knowledge grounded image question answering, video ques-
tion answering, image captioning reading comprehension, image question generation, image clas-
sification, and LLaVa-Instruct-150k, a benchmark that incorporates visual conversation, complex
reasoning, and detailed image description.

3.3 Discussion

Most multimodal approaches use a transformer as a backbone. These architectures have outper-
formed CNNs on most vision tasks as self-attention focuses on global contextual learning at a low-
level stage. However, the generalization of large-scale multimodal architectures heavily depends
upon the pretraining objective, learning technique, and nature of the benchmarks illustrated in
this survey.

VLP [91] is considered as the first SOTA on joint vision-language multi-modal tasks specifically
generation and understanding. Likewise, VirTex showed SOTA performance on multimodal tasks
[94]. ViLBERT [9] marked SOTA on VQA and RefCOCO+ with a huge margin. AV-HuBERT [3]

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 3, Article 74. Publication date: October 2023.



74:12 M. A. Manzoor et al.

Table 3. The Unifying Architectures with the Benchmarks, Tasks and Architectural Setting

Adopted by the Authors

Model Benchmarks Tasks Architectural Comparison

UniT [108] COCO, QQP, VQAv2
QNLI, MNLI, SST-2,
SNKI-VE

VQA, OD, VE 201M param., comprised of
ResNet-50 + BERT

ViT-BERT
[107]

MNLI, QQP, QNLI,
SST-2, RTE Cifar,
ImageNet, Flowers, Pet

Vision-only,
text-only

12 layer transformer,
768-hidden, 3072 MLP

UNITER [82] VQA, Flicker30k, NLVR,
Ref-COCO

IR, TR VQA,
RE

12-24 layers, 768- 1024 hidden
12-16heads, 86-303M param.

VATT [109] AudioSet, HowTo
UCF101, HMDB51,
MSR-VTT

VAR, AEC,
TVR

Transformer-based variants;
155M to 415M param.

OFA [110] SST-2, RTE, MRPC,
QQP, QNLI, MNLI,
SNLI-VE

NLU, NLG,
Image
Classification

Transformer-based variants;
33M to 940M param.

InstructBLIP
[98]

No-Caps, Flickr30k,
GQA,VSR, IconQA,
TextVQA, Visdial, HM,
VizWiz, SciQA IMG,
MSVD QA, MSRVTT
QA, iVQA

IC, VR, ICRC,
Video QA,
IQG, Image
QA,LLaVa-
Instruct-150k

Variations of BLIP-2, Image
encoder:ViT-
g/14,LLMs:FlanT5-XL (3B),
FlanT5-XXL (11B), Vicuna-7B
and Vicuna-13B

used audio-visual representation on the benchmark (for audio-only speech recognition) and led
to 40% relative WER reduction over the state-of-the-art performance. ERNIE-ViL [95] achieved
SOTA on five cross-modal downstream tasks and ranked at first on the VCR leaderboard with
an absolute improvement of 3.7%. OSCAR [93] created new SOTA on six well-established vision-
language understanding and generation tasks. Vokenizer [96] presented visually-supervised lan-
guage models with consistent improvements on multiple language tasks. Finetuning on a similar
benchmark offers outstanding results, though this needs more parameters, time, and resources.
Many researchers are addressing these challenges by proposing unifying architectures to deal with
multiple modalities with the same backbone for multitasking. Such generic models as summarized
in Table 3 can share the parameters for different downstream tasks and avoid extensive pretraining
or finetuning for each task. Although unifying architectures are not specialized for a specific task,
they show competitive results.

It is observed that pretraining in a correlated manner considering different modalities enhance
performance if strong alignment and correspondence among representation are considered during
the training phase. The models trained on multiple modalities also express good performance on
unimodal tasks as ViT-BERT [107] surpassed the ViT on vision-only tasks. However, ViT-BERT
could not surpass BERT on text-only tasks due to the low amount of data for finetuning, specif-
ically on the RTE dataset. Likewise, the results achieved by joint training of baselines give bet-
ter performance than cross-modal finetuning, which faces the challenge of mismatching between
pretraining objectives and downstream tasks. ViT-BERT achieved 83% and 89% average scores
on Text-only and Vision-only tasks, respectively, making it a moderate option with an 86% av-
erage for both tasks (consume fewer parameters than UniT). The UniT [108] as a generic model
achieved promising results with shared parameters on all tasks. However, UniT could not surpass
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VisualBERT or BERT, which are trained for specific tasks only. Smaller batch size and higher learn-
ing rate cause the problem of lower performance and divergence, respectively.

The UNITER-large [82] model achieved comparable performance across all the benchmarks
but consumed 303M parameters. UNITER-base model also performed well except VQA with 86M
parameters. VATT [109] outperformed the CNN-based approaches in all metrics for audio event
recognition and video action recognition tasks. Additionally, it exhibits competitive results for text-
to-video retrieval. The author introduced the DropToken strategy that reduces the computational
complexity of training. DropToken is the sampling technique alternative to dimension and reso-
lution reduction to mitigate redundancy challenges. Additionally, Multimodal Contrastive Learn-
ing based on Noise Contrastive Estimation and Multiple Instance Learning is used to align video-
audio and video-text pairs after projecting in the shared space. OFA [110] surpassed the UNITER,
UNIMO, and other SOTA on VQA and SNLI-VE. Notably, it achieved the highest score on RTE and
RefCOC0+ by outperforming task-specific and unifying architectures. Specifically, OFA results as-
sert that large-scale multimodal pretrained approaches compete with natural language pretrained
SOTA for understanding and generation tasks. Furthermore, OFA outperformed Uni-Perceiver on
out-of-domain tasks, e.g., single sentence and sentence pair classification.

InstructBLIP [112] proposed a novel instruction tuning framework towards generalized vision-
language models. Their proposed method achieved state-of-the-art performance across an array of
benchmarks with strong evaluation protocol. Besides, InstructBLIP has demonstrated its potential
as an advanced initial model for finetuning on downstream tasks.

3.4 Acronyms

This section contains all acronyms in the tables. AEC: Audio Event Classification, Auton. Driving:

Autonomous Driving, AR: Action Recognition, AVSS: Audio Visual Speech Synthesis, CIR: Cap-
tion to Image Retrieval, CMR: Cross-Modal Retrieval, ED: Event Detection, EL: Entity Labeling,
EQA: Embodied Question Answering, GR: Gesture Recognition, GRE: Generation of Referring
Expressions, IC: Image Captioning, ICRC: Image Captioning Reading Comprehension, IE: Infor-
mation Extraction, IQG: Image Question Generation, IR: Image Retrieval, IS: Indoor Segmentation,
ITR: Image to Text Retrieval, LaVa-Instruct-150k: includes visual conversation, complex reason-
ing, and detailed image description, MML: Multimodal Learning, MMSA: Multimodal Sentiment
Analysis, NLG: Natural Language Generation, NLU: Natural Language Understanding, NLVR:

Natural Language for Visual Reasoning, OCR: Optical Character Recognition, OD: Object De-
tection, RE: Referring Expression, SSS: Sound Source Separation, TD: Text Detection, TR: Text
Retrieval, TVR: Text-to-Video Retrieval, VAC: Video Action Recognition, VAR: Visual to Audio
Retrieval, VC: Video Captioning, VCR: Visual Common Sense Reasoning, VD: Visual Dialog, VE:

Visual Entailment, VG: Visual Generation, VLP: Vision Language Pretraining, VQA: Visual Ques-
tion Answering, VR: Video Reasoning, VU: Visual Understanding.

4 MULTIMODAL APPLICATIONS

This section presents the categorical detail of multimodal applications enhanced by deep learning
architectures as shown in Figure 3. The multimodal tasks are divided into main categories: under-
standing, classification, retrieval, generation, and translation. The benchmark, evaluation metrics,
description, and comparison for the best-performing architectures are discussed for each multi-
modal application.

4.1 Understanding

Understanding text, speech, and vision is the most important and primary task of AI-based systems.
Relevant information extraction, recognition, and identification of entities from different mediums
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Fig. 3. Taxonomy of the multimodal applications in Section 4.

(text, images, speech) are its subtasks. The information achieved through understanding benefits
many downstream tasks directly or indirectly.

4.1.1 Visually Rich Document Understanding. Understanding visually rich documents with
structured information is important for different applications [115]. Contrary to the classical infor-
mation extraction methods, Visually Rich Documents Understanding considers the visual layout
along with the text. LayoutLMv2 [116] pretrained a Transformer that learns from different modal-
ities at the pretraining stage by integrating and aligning layout, textual, and visual information.
LayoutMv2 used more than 10 billion documents to pretrain a model that outperformed SOTA
on document understanding tasks. More recently, Li et al. [117] proposed StrucTexT, which out-
performed LayoutLMv2 by pretraining a Transformer in a self-supervised manner, with fewer pa-
rameters, achieved high scores. The publicly available benchmark datasets for downstream tasks
are SROIE [118] and FUNSD [119]. LayoutLMv2 achieved 97% and 84% F1 scores on SROIE and
FUNSD, respectively. StrucTexT had 96.88% and 85.68% F1 on SROIE and FUNSD, respectively.

Gu et al. [120] released an improved version XYLayoutLM of LayoutLMv2 [116]. They proposed
Augmented XY Cut to capture reading orders as layout information, which was neglected previ-
ously. Furthermore, the variable length of the input sequence is dealt with DCPE (Dilated Condi-

tional Position Encoding - inspired by CPE [121]) that creates the 1D and 2D features of textual
and visual input, respectively, for Convolution. The model succeeded in surpassing the other ap-
proaches on XFUN [116] benchmark for SER (Semantic Entity Recognition) and RE (Relation

Extraction) tasks.

4.1.2 Multimodal Abstractive Summarization. This task takes massive multimodal content
(video, images and corresponding text) from the internet and extracts the vital information to gen-
erate a summary [122]. Palaskar et al. [123] generated a summary using Multisource seq2seq with
Hierarchical attention that integrates information from different modalities. Likewise, a Multistage
fusion network was proposed that established the interaction between different source modalities.
Recently, an approach was proposed [124] that exploits the visual modality to generate a summary
with Generative pretraining language models (GPLMs). The add-on layer based on attention
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is inserted in visually-guided GPLMs to maintain the visual incorporation and text generation. The
model was evaluated on the How2 [125] dataset, which contains instructional videos with two to
three sentences of 2,000 hours. The visually grounded variants of the proposed model outpaced
the baselines, achieving the highest ROGUE-1, ROGUE-2, and ROGUE-L on the benchmark.

4.1.3 Audio-Visual Speech Recognition. Audio-Visual Speech recognition (AVSR) is one of
the earliest multimodal research domains that encouraged the research community to understand
speech by using hearing and vision features simultaneously. Visual features and speech play a
vital role in understanding speech, especially noise and assisting patients suffering from speech
impairment. Most of the recent models wav2vec2.0 [37], HuBERT [99], and De-CoAR2.0 [126] were
using audio only for speech recognition. Lip movement provides a supervisory signal by exploiting
self-supervision to recognize better.

Recently released, Audio-Visual Hidden Unit BERT (AV-HuBERT) [3] is a self-supervised
representation learning framework. The mentioned approach learns audio-visual speech represen-
tation by taking favor of lip-reading and ASR. The proposed model achieved 32.5% WER on LRS3
[127] benchmark by using 30 hours of labeled data from 433 hours and in achieving 26.9% outper-
formed the former SOTA that trained on 31K hours [128]. The author also stated that exact repre-
sentation performed speech recognition on audio-only tasks by reducing 40% WER. The model is
exceptional for visual only modality by exploiting contextualized representation of AV-HuBERT.

4.1.4 Speech Separation and Enhancement. Speech enhancement (SE) is the process in which
speech signals of the target speaker are extracted in an acoustically noisy environment. SE im-
proves speech quality (sounds) and speech intelligibility (linguistic content). The estimation of
multiple targets in the speech is known as speech separation, or source separation [129]. Previ-
ously, these tasks were handled with statistical and mathematical criteria under signal processing
[130]. Currently, the evolution of supervised learning, multimodal methods, and fusion techniques
attain the uninfluenced visual features of the speaker accompanying acoustic features in a noisy
environment.

Audio-Visual Sentence Extraction (AV-SE) and Audio-Visual Sentence Separation (AV-

SS) systems count several speakers and trace their faces. Detection and Tracking algorithms are
used to achieve high-dimensional visual frames of faces. The dimensionality is reduced with an
active appearance model that is based on principal component analysis (PCA) [131]. Sound
Source separation is achieved by Zhu and Rahtu [132] using the Appearance Attention Module
that leverages categorical information on of single frame video. The authors optimized the model
by correlating the appearance embedding and feature maps. The sound source is located by the
scalar product of embedding and feature maps. The dataset MUSIC contains YouTube videos made
up of different musical instruments and has off-screen noise [133]. The model is evaluated on the
MUSIC dataset using standardized evaluation matrices, i.e., Signal to Distortion Ratio (SDR),
Signal to Interference Ration (SIR), and Signal to Artifact Ratio (SAR). The attention-based
approach surpassed the Resnet-18 and Resnet-50 by achieving SDR 10.74, SIR 17.29 and SAR 13.04.

4.2 Classification

Classification is the systematic arrangement of samples into a group or category that follows the
established criteria. Several tasks of vision, textual and speech fall under the umbrella of classifica-
tion. The prominent multimodal classification tasks discussed in this study are sentiment analysis,
fake news detection, and event detection.

4.2.1 Sentiment Analysis. Sentiment analysis is the core task in NLP that extracts and classifies
reviews, feeling, gestures and behavior toward a specific entity. Sentiment Analysis understands
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people’s perspectives for efficient decision-making in multiple domains. Textual representation
has been analysed widely in previous research such as [134, 135], and [136]. However, the sen-
timent analysis task moved from text modality to another form of modality due to social media
and the internet. Chen and Li [137] designed deep learning architecture to extract sentiment from
multimodal complex data by designing two component-based methods consisting of shallow fu-
sion and aggregation parts. The shallow fusion component extracts contextual information from
the different domains using the attention mechanism, and the aggregation part attains sentimen-
tal word-aware fusion. The proposed architecture outperformed other methods by achieving the
highest score on multimodal datasets CMU-MOSI, CMU-MOSEI, and YouTube datasets.

4.2.2 Event Detection. Detection of an event, trend or situation specifically through content
available on social media becomes more efficient and generous by considering data from different
modalities [138]. A massive amount of data is generated that significantly impacts the lives, prop-
erty, and psychology of humans [139]. Event detection can be mapped to other realistic scenarios,
such as Emergency Management, Disaster Detection, and Topic Detection [47]. Even though the
data from different perspectives enhance the performance, the challenges are also increased for
methods to deal with redundant and heterogeneous characteristics. No large enough dataset is
available for disaster detection to employ deep learning architecture except CrisisMMD [140], Cri-
sisNLP, and CrisisLex. For traffic event detection, Chen et al. [141] created a multimodal dataset
by integrating the traffic-related filtered tweets with sensor data. The author achieved 84%, 83%,
and 87% F1 score with CNN, RNN, and mmGAN (multimodal GAN) models, respectively.

4.2.3 Detecting Propaganda in Memes. Propaganda is the type of communication that affects
the psychology of people that leads them to keep specific opinions about any entity or perform
some action. Due to the high usage of social media, it has become a societal and political prob-
lem. Memes that contain visual and textual content are being used as a significant fraction of the
medium on the internet to trigger this issue.

Dimitrov et al. [4] approached this problem as a multimodal and multi-label task by detecting the
techniques to promote propaganda in memes. They released a new dataset consisting of 950 memes
(containing both textual and visual content) annotated with 22 different propaganda techniques.
Previous datasets addressed the propaganda at document level [142], sentence level and fragment
level [143]. SOTA models performed the experiments. Experiments were conducted on variations
of models that are pretrained on two approaches: (i) unimodally pretrained and (ii) pretrained with
the multimodal objective. BERT and ResNet-152 are trained separately in the first variation and
fused using MMBT (Multimodal bitransformers) with early, middle, or late fusion. ViLBERT
and Visual BERT are pretrained in multimodal nature on Conceptual Captions and MS COCO,
respectively. The results achieved by ViLBERT and Visual BERT surpassed the baseline and other
variations. Results analysis expressed that transformer-based multimodal approaches are practical
and produce efficient results.

4.2.4 Fake News Detection. Fake news can use multimedia to cause panic on social media. The
text and the image content misinterpret the facts and manipulate human psychology, leading to
rapid propagation of fake news [144]. A multimodal architecture can detect fake news by looking
for mismatches between the modalities [145].

The problem of detecting fake news for unseen and emerging events is addressed in [146]
by leveraging an Adversarial Neural Network that uses an event discriminator to remove event-
specific features and preserve shared features among events and modalities. Khattar et al. [147]
proposed SpotFake, which utilizes BERT to learn textual features and VGG-19 (pre-trained on Ima-
geNet) to learn visual features. They employ a simple concatenation technique to combine features
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obtained from different modalities. Similarly, [147] introduces the Multimodal Variational Au-

toencoder (MVAE), consisting of an encoder, a decoder, and a fake news detector module. The
variational autoencoder utilizes probabilistic latent variable models by optimizing a bound on the
marginal likelihood of the observed data. By leveraging the acquired multimodal representations
from the bimodal variational autoencoder, the fake news detector classifies multimodal posts as
genuine or fake.

Recently, Wang et al. [148] proposed fine-grained multimodal fusion networks (FMFN) to
detect fake news. First, CNN extracted visual features, and RoBERTa [70] is used to get contex-
tualized embedding of words. Then an attention mechanism is used between visual and textual
features to enhance the correlation for fusing features. Finally, a binary classifier is adopted to per-
form detection on fused features. Their model achieved 88% accuracy on the Weibo dataset [144]
by focusing only on tweets that contain text and images.

4.2.5 Visual Commonsense Reasoning. Visual Commonsense Reasoning performs robust Vi-
sual understanding by Integrating cognition, grounding, and language reasoning with recognition
tasks. Zellers et al. [149] introduced the VCR dataset containing 290k MCQA (Multiple Choice

Question Answer) problems. The author proposed the Recognition-to-Cognition Networks that
consider the grounding and contextual information for cognition level visual understanding. The
model surpassed the previous SOTA developed on VQA [25]. Song et al. [150] proposed the Knowl-
edge enhanced Visual and linguistic BERT that utilized the external commonsense Knowledge.
This approach outperformed the BERT-based approaches and previous VCR models by marginal
improvement.

4.2.6 Natural Language for Vision Recognition. The NLVR (Natural Language Vision Recog-

nition) task checks the relationship consistency between the provided one text description and
multiple images. Previous pretraining approaches [82, 151, 152] considered NLVR as a binary classi-
fier. Vision Language Navigation is a similar task in which agents traverse the real-world dynamics
by following linguistic instructions. Zhu et al. proposed AuxRN (Auxiliary Reasoning Naviga-

tion) [153] based on self-supervision that Observe Semantic Information from surrounding for
Vision-Language Navigation. In other words, the model learns the implicit information from the
environment, estimates the navigation, and predicts the next position.

4.3 Generation

In multimodal generation tasks, the data provided by the input modality is processed to generate
another modality or paraphrased into the same modality as the output. The tasks concealed by
generative category heavily rely on the previously mentioned understanding and classifications
tasks. The image captioning task generates the text after classifying the object in the input im-
age. Likewise, the text-to-image generation task understands the input text to propose a target
image.

4.3.1 Visual Captioning. Visual captioning is the task of converting an image or video modality
into a related text modality. The input is image pixels, and the output is syntactically and seman-
tically meaningful text. Producing captions based on images bridges the gap between low and
high semantic features found in image and text modalities. Some SOTA datasets in image cap-
tioning are MS-COCO [53] and Flickr30k [92]. The baseline and conventional visual captioning
pipeline consist of an image encoder and a text decoder. Recent work leverages BERT capabilities,
such as in [154]. BERT models [35] are initially trained using a large textual corpus, then fused tex-
tual and visual modalities embedding are finetuned using the right-masking pretraining technique.
Vinyals et al. [155] presented an end-to-end system based on a neural network and combined SOFA
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sub-networks for vision and language models. The method in this article significantly exceeds the
performance of previous methods. In 2017, Chen et al. [156] improved CNN and proposed SCA-
CNN based on images that CNN can extract: Spatial, Channel-wise, and Multi-layer. SCA-CNN can
incorporate Spatial and Channel-wise attention in a CNN and dynamically modulate the sentence
generation context in multi-layer feature maps. Unlike previous studies, Rennie et al. [157] used
reinforcement learning to optimize image captioning systems. They proposed that optimizing the
CIDEr using metricSCST (self-critical sequence training) is highly effective.

4.3.2 Visual Question Answering. Visual Question Answering (VQA) attempts to answer lin-
guistic questions by retrieving information from visual cues [45]. VQA combines information from
written questions and high-dimensional visual images or videos. Questions could vary from sim-
ple true/false to knowledge-based and open-ended questions, whereas visuals could vary from a
simple sketch or image to a video. Furthermore, VQA combines functions from NLP and CV fields
such as language understanding, relation extracting, attribute and object classifying, counting,
knowledge-base, and commonsense reasoning [1]. Baseline VQA maps question text and visual
embeddings obtained via recurrent and convolutional neural networks (RNN and CNN), respec-
tively, to a common vector space. Mapping embedded representation to a shared vector space
enables VQA to tackle open-ended free-form questions. In the literature, VQA deep learning tech-
niques are classified as joint embedding models [158], attention mechanism [159], compositional
model [160], Graph Neural Networks (GNN) [60] and knowledge base model [161]. There exist
review papers targeting VQA as a research field of its own such as in [45] and [5]. In addition to sur-
veys, benchmarks such as [162] by Carnegie Mellon University (CMU) and [163] are available.
Benchmark datasets are VAQ v1.0 [5], VAQ-X [164], and VAQ-CP [165].

4.3.3 Visual Generation. Visual Generation, also known as text-to-image generation, typically
uses the input text to generate images. Visual generation is the reverse direction of image cap-
tioning. In 2016, Reed et al. [166] first proposed deep convolutional generative adversarial

networks (GAN) to synthesize images based on text descriptions. The training model is based
on DC-GAN, but different from traditional GAN, the input of D is added with real image and
false text description pairs. The author trained a CNN to predict style using an image generated
by generator G. The predicted style can be used in the composition of G. The datasets used in
this paper are: Caltech-UCSD Birds [167] dataset, Oxford-102 Flowers dataset, and MS COCO
[53] dataset. Xu et al. [168] introduced Attentional Generative Adversarial Network (At-

tnGAN) for fine-grained text-to-image generation. AttnGAN, composed of an attentional gen-
erative network and Deep Attentional Multimodal Similarity Model (DAMSM), focuses on
relevant words to depict specific image subregions. DAMSM augments generator training with
a fine-grained image-to-text matching loss. Comprehensive evaluation shows AttnGAN signifi-
cantly outperforms previous GAN models. This method is evaluated on CUB [167] and COCO [53]
datasets.

4.3.4 Audio-Visual Speech Synthesis. Prajwal et al. [129] presented the model synthesizing
speech from lip movement in the presence of noise. The author released the benchmark Lip2Wav
Dataset, as the previous work [169] was evaluated on small and limited vocabulary-based datasets
[127, 170, 171]. The designed dataset enables the model to synthesize speech from unconstrained
lip movements.

High-quality speech is generated [172] using a Tacotron [173] inspired decoder that produce
melspectrogram from text inputs. It is conditioned on the face embeddings encoded in the previ-
ous representation, and outperformed previous work [174–176] on all objective metrics for lip-to-
speech work especially on the TIMIT [171] dataset.
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4.4 Retrieval

Retrieval systems take the input from the user as a query and provide the most relevant results by
considering the contextual information. The evolution of multimedia-enhanced is in the form of
well-established cross-modal tasks.

4.4.1 Referring Expression Comprehension. In Referring Expression Comprehension

(REC) application, an expression is used to refer to and localize a target object in an image.
The referring expressions are specific and detail the object properties and the relationship to
its surroundings. Therefore, visual attributes, relationships, and contextual information need to
be addressed. In [50], REC supervised DL architectures are categorized into one or two stages.
In two-stage pipelines, the first stage generates and lists proposed objects based on the image.
The second stage encodes the referring expression and computes a matching score between the
proposed objects and encoded referring expressions. In one-stage pipelines, image and language
features are concatenated and fed into the model in a single faster step. Some pretrained models for
task-agnostic vision and language applications used for REC are VL-BERT [177] and ViLBERT [9].

4.4.2 Visual Language Retrieval. Indexing, query formulation, retrieval and evaluation are the
steps required to build an Information Retrieval (IR) application. In indexing and query for-
mulation, documents and user interfaced queries are represented by their characteristic features,
respectively [178]. The retrieval system then maps both representations to retrieve or extract the
required useful information. The performance of the retrieval task is evaluated based on recall
and precision. In multimodal information retrieval, the system searches documents with different
modalities such as text, images, videos, or physiological signals and images. Employing more than
one modality enriches information retrieving processes. One example of multimodal information
retrieval is in electronic health records.

4.4.3 Electronic Health Records. Patients health records contain various modalities such as cat-
egorical data, text, images such as MRI scans, or signals such as electrocardiograms (ECG)

[178]. Information retrieval systems can extract information from different modalities to report,
present, and/ or predict a patient health status. For instance, Supervised Deep Patient Repre-

sentation Learning Framework (SDPRL) engages different modalities information to learn pa-
tient representation [179]. SDPRL is built and tested using the benchmark dataset MIMIC-III. Chen
et al. [180] address the problem of Major Depressive Disorder (MDD) detection by proposing a
novel Graph Neural Network (GNN)-based multimodal fusion strategy, coined as “modal-shared
modal-specific GNN”. This approach accounts for heterogeneity/homogeneity among psychophys-
iological modalities and inter/intramodal characteristics, and it employs a reconstruction network
and attention mechanism to obtain a compact multimodal representation. Similarly, Multimodal
Graph Neural Network framework was introduced to predict cancer survival using multimodal
data such as gene expression, copy number alteration, and clinical data [181].

4.5 Multimodal Translation (MMT)

Visual modality has been considered marginally beneficial for machine translation due to the ab-
sence of sufficient features in the image. Caglayan et al. [182] proposed that visual information
benefits Machine Translation (MT) when the source sentence lacks linguistic context. The au-
thor exploited the Degradation technique in the form of Color Deprivation, Entity Masking and
Progressive Masking to degrade the source sentence. Additionally, unrelated images (violation
of semantic compatibility) were fed to evaluate the visual sensitivity of the approach. ResNet-50
CNN based encoder [24] is used for visual features extraction. Multimodal Attention for Neural

Machine Translation (NMT) inspired by [183] achieved the context vector from textual and
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visual features. Multi30K and flicker30 were used for training. The authors presented a novel en-
coder for Neural Machine Translation (NMT) [60] that uses a graph-based approach for combin-
ing multiple modalities. This approach takes advantage of detailed semantic connections between
these different data types to enhance the learning of combined representations.

Su et al. [184] introduced an approach that exploits the interaction of semantic representations
across modalities, drawing inspiration from QA and NER domains. Two attention-based models
were proposed: one using a bi-directional attention mechanism to learn from text and visual feature
interaction, and the other incorporating a co-attention mechanism that generates context vectors
from textual representation and subsequently uses it to update the text context vector with further
interactive information. These models were evaluated on the expanded Multi30K dataset, showing
superior performance over previous baselines, with or without pretraining.

5 DATASET

This section summarizes the benchmarks for the pretraining, finetuning, and evaluation of multi-
modal models. As per our knowledge, we cover all the benchmarks containing image, text, video,
and audio modalities. The motive is to provide ready-to-use information to the new researchers
regarding the nature of benchmarks, the number of samples in each benchmark, the usability for
different tasks, and the comparative information as shown in Table 4. The MS COCO dataset [53] is
used for image recognition, image detection, image segmentation, and image captioning. For each
image in the dataset, five different descriptions are provided. This dataset contains 91 object types
that would be easily recognizable. The dataset includes more than 300,000 images and 2.5 million
labeled instances.

The Flickr30k [92] is collected from Flickr, together with five image descriptions provided by
human annotators. The Flickr8k [185] is the smallest version, also collected from Flickr, that leads
to training the model easier and faster. FUNSD [119] is a small dataset comprising 199 real, fully an-
notated, scanned forms. FUNSD contains 31,485 words, 9,707 semantic entities, and 5,304 relations
and aims to extract and structure forms’ textual content. SROIE [118] consists of a dataset with
1,000 whole scanned receipt images and annotations for the competition on scanned receipts

OCR and key information extraction (SROIE). CMU Multimodal Opinion Sentiment and

Emotion Intensity (CMU-MOSEI) dataset [186] is the largest dataset of multimodal sentiment
analysis and emotion recognition to date. In 2018, the CMU-MOSEI dataset was created, consisting
of 23,453 annotated video clips. These clips were sourced from 1,000 unique YouTube videos that
covered 250 different topics.

VQA (Visual Question Answering) [25] is a large dataset containing more than 250,000 im-
ages with at least three questions per image and 10 ground-truth answers per question. VQA
v1 provides 6,141,630 ground-truth answers and 1,842,489 plausible answers, making it harder
for the model to answer the questions correctly. VAQ-CP (Visual Question Answering under

Changing Priors) is the splits of the VQA v1 and VQA v2 datasets. CrisisMMD [140] is a sizeable
multimodal dataset of natural disasters collected from Twitter, including earthquakes, hurricanes,
wildfires, and floods that happened in the year 2017 across different parts of the world. It has
three types of annotations. The first one is “Informative” or “Not Informative”, which determines
whether it is helpful for humanitarian aid. The second type is “Humanitarian Categories”, such as
infrastructure and utility damage, vehicle damage, and the like. The last type is “Damage Severity
Assessment”, which describes the severity of the damage.

MIMIC (Medical Information Mart for Intensive Care) [187] is a publicly available dataset
developed by the Laboratory for Computational Physiology that comprises de-identified health
data associated with thousands of intensive care unit admissions. Currently, it has three versions:
MIMIC-II, MIMIC-III, and MIMIC-IV. MIMIC-III contains information about 53,423 adults admitted
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Table 4. The Benchmarks’ Information for the Tasks in this Study

Dataset Modality Count Tasks Data Category

MS COCO [53] text + image 328k Image Recog., IC Multiple
Conceptual Captions [90] text + image 3.3M VQA, VCR, IR, IC Multiple
Flickr30K [92] text + image 31k IR, CMR, IC Multiple
Flickr8K [185] text + image 8k IR, CMR, IC Multiple
FUNSD [119] text + image 199 TD, OCR, EL Scanned forms
SROIE [118] text + image 1k OCR, IE Scanned images
CMU-MOSEI [186] text + video 23,453 MMSA YouTube videos
VQA [25] text + image 250k VQA Multiple
CrisisMMD [140] text + image 16,097 IC, ED Disasters tweets
MIMIC [187] MML data 53,423 IR Patients Information
Fashion-200K [188] text + image 200k IC, IR Clothes
NYU Depth v1 [189], v2 [190] RGB + Depth 4GB, 90GB IS, IC Indoor Scenes
SKIG [74] text + image 2160 GR Hand gestures
GoodNews [191] text + image 466,000 IC News
MSR-VTT [192] text + video 200k VU Commercial videos
MSVD-QA [193] text + video 2089 VR, VQA, VC Multiple
TGIF-QA [194] text + image (gif) 103,919 VQA Multiple
EQA-v1 [195] text + 3D env. 9,000 EQA, VQA Multiple
VideoNavQA [196] text + 3D env. 28 EQA, VQA Multiple
TDIUC [197] text + image 1,654,167 VQA Multiple
nuScenes [198] image + sensor data 1.4M IR, Auton. Driving Driving Information
CUB-200 [167] text + image 11,788 VG Birds
Oxford-102 Flowers [199] text + image 4,080-26,316 VG Flowers
VCR [149] text + image 263k VU Movie Scenes
How2 [125] audio + text + video 2000 hours MML Instructional Videos
Lip2Wav [129] audio + video 120 hours AVSS Talking Face Videos
MUSIC [133] audio + video 685 SSS Videos of Music
MOSI [200] audio + text + video 3702 Multimodal analysis YouTube videos
GRID [201] audio + video 33,000 VSR Speech

The Task column lists the tasks in the corresponding papers.

to critical care units from 2001 to 2012, such as the patient’s gender, height, and other essential
information, such as blood routine, liver function, and other hospital test data, as well as medica-
tion information.

Fashion200K [188] contains 200K fashion images, and each image comes with a compact
attribute-like product description. MIT-Stata Center [202] is a multimodal dataset containing vi-
sion (stereo and RGB-D), laser and proprioceptive data. This dataset comprises over 2.3 TB, 38 h and
42 km. This dataset also includes ground-truth position estimates of the robot at every instance.
This is an instrumental dataset for robotic mapping and CV research. The NYU-Depth dataset
consists of video sequences recorded by the RGB and Depth cameras from the Microsoft Kinect.
NYU-Depth v1 [189] provides about 4GB of labeled data and about 90GB of raw data. NYU-Depth
v1 includes 64 different indoor scenes and 7 scene types. NYU-Depth v2 [190] includes 464 different
indoor scenes and 26 scene types.

The Shefeld Kinect Gesture (SKIG) [74] is a gesture dataset containing 2,160 hand gesture se-
quences. These hand gestures can be classified into 10 categories: circle (clockwise), triangle (anti-
clockwise), up-down, right-left, wave, “Z”, cross, come-here, turn-around, and pat. The sequences
are recorded under three different backgrounds and two illumination conditions, which provide di-
versity. GoodNews [191] is a large dataset containing 466,000 images with captions, headlines, and
text articles. However, different from datasets like MSCOCO or Flicker8k, GoodNews includes a sin-
gle ground truth caption per image. GoodNews captions written by expert journals have a longer
average length than generic captioning datasets, meaning that these captions are more descriptive.
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MSR-VTT [192] is a large-scale video description dataset: 10K web video clips with 38.7 hours
and 200K clip-sentence pairs. MSR-VTT was created from 257 popular queries from a commercial
video search engine. Each clip in MSR-VTT is annotated with approximately 20 natural sentences.
This dataset is presented for video understanding. The Microsoft Research Video Description

Corpus (MSVD) dataset MSVD-QA contains 122K descriptions of 2,089 short video clips (usually
less than 10 seconds). The MSVD dataset contains different language descriptions, such as English,
Hindi, Romanian, Slovene, and more. MSVD-QA is a benchmark for video retrieval, visual question
answering, and video captioning.

TGIF-QA [194] is a large-scale dataset containing 103,919 QA pairs collected from 56,720 an-
imated GIFs. These GIFs are from the TGIF dataset. The TGIF dataset is based on GIFS data as
GIFs have a concise format and cohesive storytelling. TGIF-QA can be used for visual question-
answering research. EQA (Embodied Question Answering) v1.0 [195] is a dataset containing
9,000 questions from 774 environments. The visual questions and answers in this dataset are
grounded in House3D. EQA-v1 contains location, color, and place preposition questions.

VideoNavQA [196] is also a dataset used to study the EQA task. VideoNavQA contains 28 ques-
tions belonging to eight categories with 70 possible answers. The complexity of the questions in
VideoNavQA far exceeds that of similar tasks that use generation methods that extract ground
truth information from the video to generate questions. Task Directed Image Understanding

Challenge (TDIUC) [197] is a dataset containing 167,437 images and 1,654,167 question-answer
pairs. TDIUC divides VQA into 12 constituent tasks, which makes it easier to measure and com-
pare the performance of VQA algorithms. The 12 different question types are grouped according
to these tasks.

nuScenes [198] is a large-scale public dataset for an autonomous driving dataset with 3D object
annotations. It is also a multimodal dataset. nuScenes provides 1.4 million camera images, 1500h of
driving data from four cities (Boston, Pittsburgh, Las Vegas and Singapore), sensor data released
for 150h (5x LIDAR, 8x camera, IMU, GPS), detailed map information, 1.4M 3D bounding boxes
manually annotated for 23 object classes, and so on. nuScenes can be used for intelligent agent
research. nuImages is a large-scale autonomous driving dataset with image-level 2D annotations.
It has 93k video clips of 6s each, 93k annotated and 1.1M un-annotated images. The Caltech-UCSD
Birds dataset (CUB-200) [167] includes images of 200 different bird species: a total of 11,788 images.
Every image in this dataset has annotations that include a bounding box around the bird, a basic
segmentation of the bird, and labels for various attributes. The Oxford-102 Flowers dataset features
images from 102 bird categories, with each category containing between 40 and 258 images. These
images display a wide range of sizes, poses, and lighting conditions.

Visual Commonsense Reasoning (VCR) [149] contains over 212K (training), 26K (validation),
and 25K (testing) questions, answers, and rationales derived from 110K movie scenes. It is widely
used for cognition-level visual understanding. How2 [125] is a multimodal dataset containing in-
structional videos with English subtitles and crowdsourced Portuguese translations. How2 covers
a wide variety of topics across 80,000 clips (about 2,000 hours). Lip2Wav [129] dataset contains 120
hours of talking face videos across five speakers. This dataset has about 20 hours of natural speech
per speaker and vocabulary sizes of over 5,000 words for each. MUSIC (Multimodal Sources of

Instrument Combinations) dataset [133] contains 685 untrimmed videos of musical solos and
duets. The dataset spans 11 instrument categories: accordion, acoustic guitar, cello, clarinet, erhu,
flute, saxophone, trumpet, tuba, violin and xylophone. MOSI [200](Multimodal Opinionlevel

Sentiment Intensity) dataset contains 93 videos and 3,702 video segments. The dataset provides
not only sentiment annotations, but also manual gesture annotations. GRID [201] consists of video
recordings from 54 speakers, with 100 utterances per talker, 33,000 utterances in total.
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6 FUTURE FORECASTING

This section describes the techniques researchers have observed from previous studies to adopt
and consider for achieving better results and reducing the computational cost. Additionally, these
approaches have not been considered or explored thoroughly in recent studies even after express-
ing efficient performance in relevant research.

Building Unified Models. Previous studies proved the effectiveness of transformers for NLP,
CV, and multimodal tasks. Recently, researchers have presented a unified architecture with a single
agent transformer serving as the backbone and deal with all modalities for multiple tasks [203].
Even though the results are impressive on downstream tasks, still could not surpass task-specific
models for some of the tasks [204]. For zero-shot learning, the performance highly depends on
instructions. More optimized instructions can lead to more satisfactory results. Researchers are
trying to address the challenge of sensitivity that the model expresses with the slight changes in
prompts and parameters.

Leveraging GNNs for multimodal pretraining. Ektefai et al. [205] proposed Multimodal
Graph Learning (MGL) to manage multimodal data input and produce a common output repre-
sentation for a variety of downstream tasks. This methodology initially identifies relevant entities
across data modalities, projecting them into a shared namespace, and subsequently combines these
different modalities. The process applies a message-passing module to learn node representation
based on intra-modality and inter-modality adjacency matrices. Finally, through an aggregation
process, it generates node, subgraph, or graph-level representations suitable for downstream tasks.

Pretraining Strategy. Developing an optimal set of pretraining objectives is worth exploring
for multimodal tasks. Pretext tasks directly influence the performance for downstream tasks. While
selecting pretraining objectives, we need to consider modalities, datasets, network architecture,
and downstream tasks. There is a potential to apply efficient stage-wise pretraining for multimodal
methods as Bao et al. [33] successfully adopt it for a single modality.

Enhancing Pretraining with Multilingual Features. Multilingual pretraining of multimodal
systems is less examined as English-only multimodal benchmarks are experimented heavily. UC2
[84], M3P [206], and MURAL [207] exploit multilingual features by adding a separate encoder for
multilingual or translated data. CCLM [208] based on ALBEF [209] proposed an approach that
outperformed the SOTA in a zero-shot cross-lingual set-up. In short, the multilingual perspective
is essential for enhancing the scaling success of multimodal pretraining frameworks [210].

Prompt Tuning. Prompt tuning received attention after GPT-2 and GPT-3. This technique con-
verts implicit information to a question or descriptive text, which assists in exploiting the textual
probability of language models. Prompt learning with a pretraining objective (MLM) can address
two challenges of finetuning: (i) reduce the computational complexity by avoiding the different
parameters for each downstream task, and (ii) reduce the gap between the representation learning
of pretraining tasks and downstream tasks [211]. This technique is not explored for multimodal
approaches yet. Technically, prompt tuning may transform the unifying architecture to a more
normalized and generalized version.

Masking Stage. The interaction of different modalities faces alignment challenges. Masking is
an effective strategy used to address alignment problem by generating text and images. Masking
can be applied at different stages, e.g., input level and task level, but according to Zhuge et al. [212],
embedding level masking is the most effective stage for aligning the representation of different
modalities. Fine-grain representation can be learned if we focus on the optimal alignment among
audio, video and text modalities.

Knowledge Infusion. There is a need to fuse external knowledge in multimodal representa-
tion for visual, language and audio to make the model well-informed, as Chen et al. [213] utilized
illustrative knowledge for vision and language. More intelligent architectures are required that

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 3, Article 74. Publication date: October 2023.



74:24 M. A. Manzoor et al.

integrate knowledge base features for multimodal pretraining and downstream tasks. Knowledge
Distillation enhanced the performance of ViT-BERT on all tasks by offering effective learning rep-
resentation compared to other variants that do not exploit it. For SST-2 and IN-1K, accuracy im-
proved 10% and 5%, respectively. Therefore, while designing pretraining objectives and cognitive
architectures, commonsense, situational knowledge, hierarchical, structural, or network informa-
tion must be considered.

Considering Anticipated Evaluation. Deep learning architectures need high computational
resources for experiments. Current evaluation methods provide information about the effective-
ness of the models after extensive experiments. For large-scale multimodal methods, there must
be evaluation strategies to examine the model at an earlier stage [42] to verify whether models are
compatible with downstream tasks before paying the computation cost.

The Acceleration and Scaling of Multimodal Architectures. Aside from knowledge distil-
lation [214], pruning and quantization are still unexplored to compress and accelerate the model
and improve the cross-modal inference speed. Inspired by the performance of sizeable pretrained
language models, efforts are made to achieve success on multimodal tasks through extensive train-
ing and complex architectures. However, well-developed benchmarks and models are required to
cope with the multimodal at a large scale with higher proficiency [215, 216].

Including Audio Stream. Recent multimodal surveys [41, 42] specifically for pretraining have
not considered the audio stream. Audio can be semantically rich like text and can provide emo-
tional and supplementary information about the speaker, including the boundary data in the case
of multiple speakers. Pretraining with audio is extremely important for unifying architectures as
it makes the model capable of performing downstream tasks that contain the audio stream [217].
However, the challenges of alignment and correspondence increase with multiple modalities.

7 CONCLUSION

This survey covered the role of deep multimodal learning and architectures to effectively deal
with advanced multimodal tasks. We started with deep learning-based task-specific multimodal
architectures based on encoder-decoder, attention, and reinforcement learning. Then, we covered
the advancements in hardware, large-scale computation resources, and pretraining approaches.
Pretraining and finetuning alleviate various challenges of multimodal and cross-modal tasks, in-
cluding multitasking. Therefore, we discussed the types and tasks of pretraining, which make the
training procedure effective, and SOTA transformer-based pretraining approaches that produce
high impact recently, summarize comparatively. We further showed that the research community
focused on pretraining at a large scale to create unified and generic architectures using a trans-
former as the backbone to perform a more complex task with identical parameters. We covered
SOTA multimodal architectures for different multimodal applications and their performance on
benchmarks. The applications showed the usefulness and the practicality of multimodal systems.
Multimodal possibilities are enormous, yet so far, the capabilities are explored only for the English
language. A possible suggested future research trajectory is to construct multimodal datasets in
other languages and build multilingual frameworks.
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